Estimation of parameters of deleterious mutations in partial selfing or partial outcrossing populations and in nonequilibrium populations.
نویسندگان
چکیده
The Deng-Lynch method was developed to estimate the rate and effects of deleterious genomic mutations (DGM) in natural populations under the assumption that populations are either completely outcrossing or completely selfing and that populations are at mutation-selection (M-S) balance. However, in many plant and animal populations, selfing or outcrossing is often incomplete in that a proportion of populations undergo inbreeding while the rest are outcrossing. In addition, the degrees of deviation of populations from M-S balance are often not known. Through computer simulations, we investigated the robustness and the applicability of the Deng-Lynch method under different degrees of partial selfing or partial outcrossing and for nonequilibrium populations approaching M-S balance at different stages. The investigation was implemented under constant, variable, and epistatic mutation effects. We found that, generally, the estimation by the Deng-Lynch method is fairly robust if the selfing rate (S) is <0.10 in outcrossing populations and if S > 0.8 in selfing populations. The estimation may be unbiased under partial selfing with variable and epistatic mutation effects in predominantly outcrossing populations. The estimation is fairly robust in nonequilibrium populations at different stages approaching M-S balance. The dynamics of populations approaching M-S balance under various parameters are also studied. Under mutation and selection, populations approach balance at a rapid pace. Generally, it takes 400-2000 generations to reach M-S balance even when starting from homogeneous individuals free of DGM. Our investigation here provides a basis for characterizing DGM in partial selfing or outcrossing populations and for nonequilibrium populations.
منابع مشابه
Characterization of deleterious mutations in outcrossing populations.
Deng and Lynch recently proposed estimating the rate and effects of deleterious genomic mutations from changes in the mean and genetic variance of fitness upon selfing/outcrossing in outcrossing/highly selfing populations. The utility of our original estimation approach is limited in outcrossing populations, since selfing may not always be feasible. Here we extend the approach to any form of in...
متن کاملEstimation of deleterious genomic mutation parameters in natural populations by accounting for variable mutation effects across loci.
The genomes of all organisms are subject to continuous bombardment of deleterious genomic mutations (DGM). Our ability to accurately estimate various parameters of DGM has profound significance in population and evolutionary genetics. The Deng-Lynch method can estimate the parameters of DGM in natural selfing and outcrossing populations. This method assumes constant fitness effects of DGM and h...
متن کاملThe double edged sword: The demographic consequences of the evolution of self-fertilization.
Phylogenies indicate that the transition from outcrossing to selfing is frequent, with selfing populations being more prone to extinction. The rates of transition to selfing and extinction, acting on different timescales, could explain the observed distributions of extant selfing species among taxa. However, phylogenetic and theoretical studies consider these mechanisms independently, that is t...
متن کاملHitchhiking of deleterious alleles and the cost of adaptation in partially selfing species.
Self-fertilization is generally seen to be disadvantageous in the long term. It increases genetic drift, which subsequently reduces polymorphism and the efficiency of selection, which also challenges adaptation. However, high selfing rates can increase the fixation probability of recessive beneficial mutations, but existing theory has generally not accounted for the effect of linked sites. Here...
متن کاملSelfing, adaptation and background selection in finite populations.
Classic deterministic genetic models of the evolution of selfing predict species should be either completely outcrossing or completely selfing. However, even species considered high selfers outcross to a small degree (e.g. Arabidopsis thaliana and Caenorhabditis elegans). This discrepancy between theory and data may exist because the classic models ignore the effects of drift interacting with s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 154 4 شماره
صفحات -
تاریخ انتشار 2000